\qquad

Estimation and Number Theory

Worksheet 1 Estimation

Find each sum or difference. Then use rounding to check that your answer is reasonable. Round each number to the nearest 100.

Example

$475+382=?$
$475+382=$857 Number Rounded to the nearest 100 475 500 382 400 answer is reason
Add

The estimated sum is \qquad 900

Is your answer reasonable? \qquad Yes

1. Find $534+208$.
$534+208=$ \qquad

Number	Rounded to the nearest 100
534	
208	
Add	

The estimated sum is \qquad
Is your answer reasonable? \qquad
2. Find $836-487$.
$836-487=$ \qquad

Number	Rounded to the nearest 100
836	
487	
Subtract	

The estimated difference is \qquad
Is your answer reasonable? \qquad
\qquad
\qquad

Find each sum or difference. Then use rounding to check that your answer is reasonable. Round each number to the nearest 1,000 .

Example

$$
\begin{aligned}
& 1,398+4,687=? \\
& 1,398+4,687=6,085
\end{aligned}
$$ 6,085 is close to 6,000 , so the answer is reasonable.

Number	Rounded to the nearest 1,000
1,398	1,000
4,687	5,000
Add	6,000

Is your answer reasonable? \qquad Yes
3. Find $4,772+2,409$.
$4,772+2,409=$ \qquad

Number	Rounded to the nearest 1,000
4,772	
2,409	
Add	

Is your answer reasonable? \qquad
4. Find $14,842-9,221$.
$14,842-9,221=$ \qquad

Number	Rounded to the nearest 1,000
14,842	
9,221	
Subtract	

Is your answer reasonable?

Estimate each sum or difference using front-end estimation.

Example

$$
7,389-2,543=?
$$

The leading digit

$$
\text { (7, } 389-2,54
$$ of 7,389 is 7 .

$$
\underline{7,000}-\underline{2,000}=\underline{5,000}
$$

The leading digit of 2,543 is 2 .
5. $3,351+1,469$
6. $9,217-2,881$

Name: \qquad Date: \qquad

Find each sum or difference. Then use front-end estimation to check that your answer is reasonable.

Example

$$
478+403=881
$$

Estimated sum: $\quad 400$ _ $+\underline{400}=\underline{800}$

Explain: 881 is close to 800 , so the answer is reasonable.
7. $798-465=$ \qquad

Estimated difference: \qquad - \qquad $=$

Explain: \qquad
8. $2,326+3,639=$ \qquad

$$
\underset{\downarrow}{\text { (2),326 }}+\underset{\downarrow}{\text { 3, }} \mathbf{\downarrow}
$$

Estimated sum: \qquad $+$ \qquad
\qquad

Explain: \qquad
9. $5,389-2,658=$ \qquad

Estimated difference: \qquad - \qquad $=$ \qquad

Explain:
\qquad

Find each product. Then use rounding to check that your answer is reasonable.

Example

Is the answer reasonable? \qquad Yes

10. $326 \times 3=$ \qquad
\square
Is the answer reasonable? \qquad
11. $267 \times 2=$ \qquad

Number	Rounded to the nearest 100×2

Is the answer reasonable? \qquad

Name: \qquad Date: \qquad

Find each product. Then use front-end estimation to check that your answer is reasonable.

Example
$79 \times 5=\underline{395}$
(7) 9×5
$70 \times 5=$ 350

The estimated product is \qquad _.

Explain: $\frac{395 \text { is close to } 350 \text {, so the answer is reasonable. }}{\text { the }}$
12. $54 \times 4=$ \qquad

$$
(5) 4 \times 4
$$

Estimated product: \qquad $\times 4=$ \qquad

Explain:
13. $112 \times 3=$ \qquad

$$
\text { (1) } 12 \times 3
$$

Estimated product: \qquad $\times 3=$ \qquad

Explain:
\qquad

Find each quotient. Then use related multiplication facts to check that your answer is reasonable.

Example

$741 \div 3$	24
	$3 \longdiv { 7 4 }$
$741 \div 3=247$	600
	14
$3 \times 240=720$	120
	21
$3 \times 250=750$	21

Estimated quotient:

$$
750 \div 3=250
$$

The answer is reasonable.

741 is closer to 750 than 720 . So, $741 \div 3$ rounds to $750 \div 3$.
14. $496 \div 4=$ \qquad
$4 \times$ \qquad $=$ \qquad
$4 \times$ \qquad $=$ \qquad
Estimated quotient: \qquad $\div 4=$ \qquad
The answer is \qquad
15. $516 \div 2=$ \qquad
$\underline{ }$ \times \qquad $=$
\qquad \times \qquad

$$
=
$$

\qquad

Estimated quotient: \qquad \div \qquad $=$ \qquad
The answer is \qquad _.

Name: \qquad
\qquad
16. $780 \div 5=$ \qquad
\qquad
\qquad
Estimated quotient: \qquad \div \qquad = \qquad
The answer is \qquad .

Solve. Decide whether to find an estimate or an exact answer.

Example

724 meters of barbed wire is needed to enclose a park. How much barbed wire is needed to enclose 4 identical parks?
$724 \mathrm{~m} \times 4=2,896 \mathrm{~m}$

2,896 meters of barbed wire is needed.

An exact answer is needed because the question asks how much barbed wire is needed.

17. Ms. Katy has $\$ 111$. She wants to spend $\$ 52$ on books, $\$ 33$ on fruit, and $\$ 21$ on vegetables. Does she have enough money to buy all these things?
18. A bottle contains 784 milliliters of milk. A family drinks 309 milliliters of milk in the morning and the rest of the milk in the afternoon. How much milk do they drink in the afternoon?
19. Caithlin spent $\$ 14.99$ on a sweater, $\$ 5.29$ on 2 pairs of socks, and $\$ 8.99$ on a blouse. About how much money did Caithlin spend in all?
\qquad

Worksheet 2 Factors

Write the missing numbers.
Example
$14 \times 3=$ \qquad

42 can be divided exactly by \qquad and \qquad

1. $21 \times 5=$ \qquad
\qquad can be divided exactly by 21 and \qquad
2. $35 \times 3=$ \qquad
\qquad can be divided exactly by \qquad and \qquad

Write the missing numbers.

Example

$$
12 \times 3=\frac{36}{}
$$

36 is a product of 12 and 3.
12 and 3 are factors of \qquad .

Whole numbers can be broken into factors.
3. $8 \times 12=$ \qquad
\qquad is a product of 8 and 12 .
\qquad and \qquad are factors of \qquad
4. $26 \times 4=$ \qquad
\qquad is a product of 26 and 4 .
\qquad and \qquad are factors of \qquad
\qquad

Find the quotient. Then write the missing words.

5. $14 \div 5=$ \qquad
Can 14 be divided exactly by 5 ? \qquad
Is 5 a factor of 14 ? \qquad
6. $18 \div 6=$ \qquad
Can 18 be divided exactly by 6 ? \qquad
Is 6 a factor of 18 ? \qquad
7. $28 \div 7=$ \qquad
Can 28 be divided exactly by 7 ? \qquad
Is 7 a factor of 28 ? \qquad
\qquad
\qquad

Find the factors of each number.
Example

$$
\begin{aligned}
8 & =1 \times 8 \\
& =2 \times 4
\end{aligned}
$$

The factors of 8 are $1,2,4$, and 8 .

A whole number can be written as a product of factors.
8. $24=1 \times 24$

$$
=2 \times
$$

\qquad
$=$ \qquad
$=$ \qquad $\times 6$

The factors of 24 are \qquad $\longrightarrow, ~-\quad$,
\longrightarrow, and \qquad
9. $54=$ \qquad \times \qquad

$$
\begin{aligned}
& =\square \times \square \\
& =\square \\
& =\square
\end{aligned}
$$

The factors of 54 are \qquad — \qquad
\qquad
\qquad
\qquad
\qquad and \qquad
10. $72=$ \qquad \times

$$
\begin{aligned}
& =_\times \\
& =\square
\end{aligned}
$$

$$
=\ldots
$$

$$
=\ldots
$$

$$
=
$$

\qquad \times \qquad
The factors of 72 are \qquad ——

11. $108=$ \qquad \times \qquad

$$
=\ldots
$$

$$
=\ldots
$$

\qquad

$$
=\ldots
$$

$$
=\ldots \times
$$

\qquad

$$
=\ldots \times
$$

\qquad
The factors of 108 are \qquad
\qquad

\qquad
$\longrightarrow, \ldots, \ldots$, and \quad, \quad _ \quad.
\qquad
\qquad

Divide. Then answer each question.

Example
$15 \div 2=\frac{7 R 1}{8}$
$16 \div 2=\frac{8}{2}$ A common factor is a factor that is shared by two or more numbers.

Is 2 a common factor of 15 and 16 ? \qquad No
12. $48 \div 3=$ \qquad
$52 \div 3=$ \qquad
Is 3 a common factor of 48 and 52? \qquad
13. $70 \div 5=$ \qquad
$95 \div 5=$ \qquad
Is 5 a common factor of 70 and 95 ? \qquad
14. $45 \div 8=$ \qquad
$96 \div 8=$ \qquad
Is 8 a common factor of 45 and 96 ? \qquad

Find the factors of each pair of numbers. Then circle the common factors.

Example

12 and 21

12: (1), 2, (3, $4,6,12$
21: (1), 3, 7, 21
Which of the circled common factors is the greatest?
15. 21 and 28

21: \qquad

28: \qquad
Which of the circled common factors is greatest? \qquad
16. 32 and 42

32: \qquad

42: \qquad
Which of the circled common factors is the greatest?
17. 48 and 72

48: \qquad

42: \qquad
Which of the circled common factors is the greatest? \qquad
\qquad

Find the greatest common factor of each pair of numbers.

Example

16 and 24
Step 1 Divide 16 and 24 by a common factor.

$$
16 \div 2=8,24 \div 2=12
$$

Step 2 Divide until 16 and 24 cannot be divided by a common factor other than 1 .

2	16,24
2	8,12
2	4,6
	2,3

$$
\begin{aligned}
& 2 \text { and } 3 \text { have no common factor } \\
& \text { other than } 1 \text {. }
\end{aligned}
$$

$$
10 \div 2=8,24 \div 2=12
$$

Step 3 Multiply the common factors.

$$
2 \times 2 \times 2=8
$$

The greatest common factor is 8 .

Name: \qquad
18. $\quad 12$ and 24

$$
\ldots \times \ldots \times \ldots
$$

The greatest common factor is \qquad .
19. 36 and 42

\qquad
The greatest common factor is \qquad
21. $\quad 15$ and 42

Answer the questions using these numbers.

Example
Which of the numbers have 2 as a factor?
$10,24,36$, and 54
\qquad
22. Which of the numbers have 3 as a factor?
23. Which of the numbers have 5 as a factor?
24. Which of the numbers have 3 and 5 as factors?

Find the factors of each number. Then decide whether the number is a prime number.

Example

$$
17=1 \times 17
$$

The factors of 17 are 1 and 17 . So, 17 is a prime number.
25. 5
26. 9

A prime number has only 2 different factors, 1 and itself.
27. 11
28. 26

Find the factors of each number. Then decide whether the number is a composite number.

Example

$$
\begin{aligned}
6 & =1 \times 6 \\
& =2 \times 3
\end{aligned}
$$

The factors of 6 are $1,2,3$, and 6 . So, 6 is a composite number.

A composite number has more than 2 different factors.
29. 20
30. 13
31. 63
32. 41

Which numbers in Exercises $\mathbf{2 9}$ to $\mathbf{3 2}$ are prime numbers?
33. The prime numbers are \qquad and \qquad
34. Why did you choose those two numbers? Explain your reasoning.
\qquad
\qquad

Worksheet 3 Multiples

Find the first eight multiples of each number.

A multiple of a number is the number multiplied by any whole number.

Example

$$
\begin{array}{llll}
1 \times 4=4 & 2 \times 4=8 & 3 \times 4=12 & 4 \times 4=16 \\
5 \times 4=20 & 6 \times 4=24 & 7 \times 4=28 & 8 \times 4=32
\end{array}
$$

The first eight multiples of 4 are \qquad
\qquad 12
\qquad 20 24 \qquad and \qquad 32

1. 6
$1 \times 6=\square$
$2 \times 6=\square$
$3 \times 6=\square$
$4 \times 6=\square$
$5 \times 6=\square$
$6 \times 6=\square$
$7 \times 6=\square$
$8 \times 6=\square$

The first eight multiples of 6 are \qquad
2. 8
$1 \times 8=\square$
$2 \times 8=\square$
$3 \times 8=\square$
$4 \times 8=\square$
$5 \times 8=\square$
$6 \times 8=\square$
$7 \times 8=\square$
$8 \times 8=\square$

The first eight multiples of 8 are \qquad
\qquad

Circle the numbers that are not multiples of the given number.

Example

$$
4: \quad 4,14,16,20, \text { (34), } 44
$$

4 is a factor of all the multiples of 4 .
The numbers $4,16,20$, and 44 can be divided exactly by 4 . So, they are multiples of 4 .
3. $3: 12,15,18,21,23$
4. $5: 5,15,25,51,55$
5. 7: $7,17,21,27,35,42,56,63$
6. $\quad 9: 18,36,39,45,47,49,54,63,72,79$

Check (\mathcal{V}) the correct box. Then write the missing numbers and words.

Example
Is 14 a multiple of 2 ?
$2 \longdiv { 1 4 }$
$\begin{array}{r}14 \\ \hline 0\end{array}$
Use division to determine whether a number is a multiple of another number.

No, 14 is not a multiple of 2 . It cannot be divided exactly by 2 .

Name:

\qquad
7. Is 24 a multiple of 3 ?
Yes, 24 is the \qquad multiple of 3 .
\square No, 24 is not a multiple of 3 . It cannot be divided exactly by 3 .
8. Is 45 a multiple of 6 ?
Yes, 45 is the \qquad multiple of 6 .
\square No, 45 is not a multiple of 6. It cannot be divided exactly by 6 .
9. Is 96 a multiple of 8 ?Yes, 96 is the \qquad multiple of 8 .No, 96 is not a multiple of 8 . It cannot be divided exactly by 8 .

Circle the common multiples of each pair of numbers. Then write the missing numbers.

Example

3:
$3,6,9,12,15,18,21,(24,27$
4: $4,8,(12), 16,20,(24,28,32,36$

A common multiple is a multiple that is shared between two or more numbers.

The common multiples are \qquad and \qquad 24

The least common multiple is the common multiple that is less than all the others.

The least common multiple is \qquad .
10. $5: 5,10,15,20,25,30,35,40,45$

7: $7,14,21,28,35,42,49,56,63$
The common multiple is \qquad .

The least common multiple is \qquad
11. $6: 6,12,18,24,30,36,42,48,54$

8: $8,16,24,32,40,48,56,64,72$
The common multiples are \qquad and \qquad
The least common multiple is \qquad .
\qquad
\qquad

Find the first two common multiples of each pair of numbers. Circle them and then write the least common multiple.

Example

3 and 7
3: $3,6,9,12,15,18,(21), 24,27,30,33,36,39$, (42)
7: 7, 14, (21), 28, 35, (42, 49
The least common multiple is \qquad
12. 2 and 5

2: \qquad

5: \qquad
The least common multiple is \qquad
13. 6 and 9

6: \qquad

9: \qquad
The least common multiple is \qquad

Find the least common multiple of each pair of numbers using division.
Example
8 and 16
Step 1 Divide 8 and 16 until they cannot be divided by a common factor other than 1 .

$$
\begin{aligned}
& \text { There are } \\
& \text { five factors. } \\
& \text { Step } 2 \text { Multiply the factors. } \\
& 2 \times 2 \times 2 \times 1 \times 2=16 \\
& 2 \times 2 \times 16 \\
& 2
\end{aligned}
$$

16 is the least common multiple of 8 and 16 .
14. 9 and 18
15. 14 and 28
16. 15 and 45
17. 12 and 52
\qquad

Worksheet 4 Multiplying Using Models

1. Study the array. Write a multiplication statement from the given diagram.
a.

b.

C.

2. Color dots to show the multiplication statement. Use white dots as 1 one. Cross out those unused dots.
a. 2×15

b. $\quad 4 \times 19$

3. Study the diagram. Then write a multiplication statement.
d.

\qquad
$=$
b.

$$
\begin{aligned}
9 \times \ldots & =\longleftarrow \times \\
& =\square
\end{aligned}
$$ $\times \ldots+$ \qquad \times $=$

4. Complete to show the multiplication.
a. $7 \times 14 \rightarrow 7 \times \ldots=$ So, $7 \times 14=\ldots+\ldots$
b. $\quad 5 \times 18 \rightarrow \longrightarrow \times 10=$ \qquad $\times 8=$ \qquad
So, $5 \times 18=$ \qquad $+$ \qquad $=$ \qquad
c. $\quad 2 \times 16 \rightarrow 2 \times$ \qquad $=$ \qquad
\qquad $\times 6=$ \qquad
So, $2 \times 16=\ldots+$
d. $6 \times 15 \rightarrow$ \qquad $\times 10=$ \qquad $6 \times$ \qquad
\qquad So, $6 \times 15=\ldots+\ldots$
\qquad
\qquad
5. Complete to show the multiplication.
a. $6 \times 13=$ \qquad \times \qquad $+$ \qquad \times \qquad

$$
=
$$

\qquad

$$
+
$$

\qquad

$$
=
$$

\qquad
b. $4 \times 23=$ \qquad \times \qquad $+\ldots$ \qquad

$$
=
$$

\qquad $+$

$$
=
$$

\qquad
c. $5 \times 37=$ \qquad \times \qquad $+$ \qquad \times \qquad

$$
=
$$

\qquad $+$

$$
=
$$

\qquad
6. Multiply
a. $\quad 18$

$$
\begin{array}{r}
7 \\
\hline
\end{array}
$$

b. 24

$$
\begin{array}{r}
\times \quad 9 \\
\hline
\end{array}
$$

d. $\quad 47$

$$
\begin{array}{r}
\\
\times \\
\hline
\end{array}
$$

$$
\begin{array}{r}
\\
\times \quad 5 \\
\hline
\end{array}
$$

e. 29

$$
\begin{array}{r}
8 \\
\hline
\end{array}
$$

